
A Generative and Model Driven Framework for Automated
Software Product Generation*

Wei Zhao Barrett R. Bryant
Jeffrey G. Gray Carol C. Burt
Computer and Information Sciences

University of Alabama at Birmingham, Indiana University Purdue University
Indianapolis

Birmingham, AL 35294-1170, U.S.A.

{zhaow,bryant,gray,cburt}
@cis.uab.edu

Rajeev R. Raje
Andrew M. Olson

Computer and Information Science

Indianapolis, IN 46202, U.S.A.

{rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943, USA

auguston@cs.nps.navy.mil

ABSTRACT
Component-based Software Engineering (CBSE) and related
technologies have demonstrated their strength in recent years by
increasing development productivity and parts reuse. Recently,
the Model Driven Architecture (MDA) has raised the abstraction
level of programming languages to modeling languages that can
be compiled by downward model transformations.
Correspondingly, the goal of Generative Programming (GP) is to
automate concrete software product generation from a domain-
specification and reusable components. This paper describes the
UniFrame framework, which is built on the foundation of CBSE
while leveraging the capabilities offered by MDA and GP.
UniFrame provides theories and implementation for steps of
model transformations for a concrete software product based on
domain development in various Generative Domain Models
(GDMs).

Keywords
Component-based Software Engineering, Model Driven
Architecture, Generative Programming, Domain Engineering,
Application Engineering, Two-Level Grammar, Generic
Modeling Environment, Feature Modeling.

1. INTRODUCTION
An upward shift in abstraction often leads to an increase in
productivity and usually depends highly on the automation of
transforming the higher-level abstraction to the lower-level
abstractions. As programming languages made their evolution
from machine language to assembly language, to 3rd generation
languages (FORTRAN, COBOL, C, Java, etc.), programmers
were able to concentrate more on the essence (inherited concepts
and relationships in applications) of the application rather than
being distracted by accidental difficulties (e.g., the constraints and

syntax of underlying hardware and technologies) [Bro87]. The
trend is that the programming language will ultimately evolve up
to the concepts and data set relationships in the problem domain
space. This necessitates that a whole framework, rather than a
simple conventional compiler, is needed for getting this high level
language to be executed by computers directly; at the same time,
this high level “language” is not restricted to the traditional sense
of language definition1 but rather a combination of language and
tool support. In this paper, we describe our efforts for constructing
such a compilation framework and the formal transformation and
validation techniques to be integrated into this high level language
supporting toolset.

The paper is organized as follows. The Generic Modeling
Environment (GME), the modeling tool we used in our research,
is briefly mentioned in section 2. Section 3 describes the Two-
Level Grammar (TLG), the formal language for specifying the
domain models and model transformations. The framework
architecture is explained in section 4, and the paper concludes in
section 5.

2. GENERIC MODELING ENVIRONMENT
The Generic Modeling Environment (GME) [GME00], developed
at the Institute for Software Integrated Systems (ISIS) at
Vanderbilt University, is a meta-configurable toolset that supports
the easy creation of domain-specific modeling and program
synthesis environments. GME provides generic modeling
primitives that assist any domain-specific environment designer to
create meta-models2 for domain-specific modeling. The domain
experts can use this tailored modeling environment to construct
the domain-specific models.

We use the GME for two primary purposes:

1. At the domain engineering level, the GME is used by
the domain environment analysts to create domain

* This research is supported by the U. S. Office of Naval
Research under the award number N00014-01-1-0746.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 Traditional programming languages are defined by lexical,

syntactic and semantic meanings.
2 The meta-model is also called domain modeling paradigm and

environment, or domain modeling concepts and language
definition.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
A Generative and Model Driven Framework for Automated Software
Product Generation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of CBSE 6, the 6th Workshop on Component-Based Software Engineering: Automated
Reasoning and Prediction, May 3-4, 2003, Portland, Oregon, 2003

14. ABSTRACT
Component-based Software Engineering (CBSE) and related technologies have demonstrated their
strength in recent years by increasing development productivity and parts reuse. Recently, the Model
Driven Architecture (MDA) has raised the abstraction level of programming languages to modeling
languages that can be compiled by downward model transformations. Correspondingly, the goal of
Generative Programming (GP) is to automate concrete software product generation from a
domain-specification and reusable components. This paper describes the UniFrame framework, which is
built on the foundation of CBSE while leveraging the capabilities offered by MDA and GP. UniFrame
provides theories and implementation for steps of model transformations for a concrete software product
based on domain development in various Generative Domain Models (GDMs).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

feature meta-models and the domain feature models3. In
the meta-models, the concepts for constructing feature
models (e.g., mandatory features, optional features,
alternative features, or-features) should be defined using
the generic-modeling primitives built into the GME.
Feature models [Kan98] describe the common and
variable features of the products, their
interdependencies, organizations and supplementary
information. In other words, feature models are the
visualized specifications for the domain where the
knowledge of manufacturing the individual products out
from the domain is embedded.

2. At the application engineering level, the GME is used to
provide the environment for the domain experts (a.k.a.
requirements analysts, business analysts) to construct
the application model (or requirements model). The
application models are constructed using the same
domain-specific modeling definitions designed by the
domain environment analyst, and also under the context
of feature models of this domain. This permits
validations and configurations to be checked
automatically during the construction. For example, a
feature model could be constructed that specifies that a
car transmission can be either automatic or manual,
but not both. This relationship is called “alternative”
[Cza00]. If the domain expert configures the car to have
both the automatic and manual transmissions, the
violation is checked based on the meta-model since the
alternative relationship used in the feature model is
defined in the meta-model. But, if the domain expert
configures the car transmission to be something called
not-invented-transmission, then the error can only be
checked based on the knowledge from this feature
model. The application model is the starting point of our
model transformation series.

GME is a means to visualize the domain concepts and concept
organization for the environment analyst and to visualize the
application organization to the domain experts. However, in order
to provide the full capability of configuration validation of
applications, and also since GME has become an open source
project, we propose to augment it in the following two senses:

1. Being a visual language, the feature model by nature
cannot capture the full semantics of logic, constraints,
interdependencies of features and Quality of Service
(QoS) compositions [Raj02]. We plan to integrate the
GME with a formal grammar, Two-Level Grammar
(TLG) that is logically computable to specify the
visualizable feature model plus the constraints beyond
the model [Bry02b].

2. The feature meta-model constructed in the GME only
provides restricted environmental checking for the
application construction which depends more on the
knowledge from domain feature models themselves, e.g.
the not-invented-transmission error. The feature

3 In the GME’s terminology, this feature model stands at the

modeling level, while in the context of this paper, the feature
model is at domain engineering level which serves as the
“meta” for application engineering.

model specification in TLG can carry the semantics of
the feature model from the domain engineering space to
the application engineering space, providing the syntax
and constraint semantics for the application
configuration.

3. TWO-LEVEL GRAMMAR
Two-Level Grammar (van Wijngaarden or W-grammar) is an
extension of context-free grammars originally developed to define
syntax and semantics of programming languages. It was quickly
noticed that TLG defines the family of recursively enumerable
sets [Sin67], while suitable restrictions yield context-sensitive
languages [Bak70]. It has been used to define the complete syntax
and static semantics of Algol 68 [Wij74]. Recently it was
extended with object orientation, and was developed as an object-
oriented requirements specification language integrated with
VDM tools for UML modeling and Java and C++ code generation
[Bry02a].
The term “two-level” comes from the fact that a set of formal
parameters may be defined using a context-free grammar, the
possible strings generated from which may then be used as
arguments in predicate functions defined using another context-
free grammar. From the object-oriented point of view, the set of
formal parameters are a set of instance variables and the predicate
functions are the methods that manipulate the instance variables.
Originally, the first level context-free grammar rules were called
the meta-productions or meta-rules, while the second level
parameterized context-free grammar rules were called hyper-
rules/productions.
The substitution process of the first level grammar is nothing new
from that of a regular context free grammar and is called simple
substitution; while the essential feature of TLG is the Consistent
Substitution or Uniform Replacement in the second level
grammar, i.e. an instance of a meta variable must be consistently
replaced in a hyper rule [Pem].
e.g. Thing :: letter; rule.
 Thing list: Thing; Thing, Thing list.
will generate:
 letter list: letter; letter, letter list.
 rule list : rule; rule, rule list.
The “::” indicates the meta-level production, and the “:” identifies
the hyper level production. Only the nonterminals are allowed in
the left side of the meta-level; both the nonterminals and
terminals can appear in the left side of the hyper production, and
the right side of both meta and hyper productions. Nonterminals
are with the first letter capitalized, and terminals are all in lower
case letters. “;” is for the “or”, and “,” is for the “and”.
The two levels of TLG make it very convenient to specify the
feature models. The first level is used for specifying the feature
organization, and the second level is used for specifying the
things that are beyond the pure organization, such as feature
attributes, relationship cardinalities, pre and post condition for the
configurations, interdependencies among the features (the
relationship beyond the direct parent and children features).
In order to demonstrate, we present the following artificial
example.

(keywords are in bold face).
Class Automobile.
 (1) Automobile :: CarBody , Transmission , Engine , Tires .
 (2) Transmission :: automatic ; manual .
 (3) Engine :: electronic ; gasoline; electronic , gasoline.
 …….
 (4) Type : car
 (5) Automobile derive Tires : if Automobile.Type = car,
Automobile #1, Tires #4;
 if Automobile.Type = truck,
Automobile #1, Tires #8.
 (6) some-post-conditions Transmission :: Transmission some-
pre-conditions.
 ………
end class

In this simple code:
(1): An automobile has 4 parts: car body, transmission, engine
and tires.
(2): The transmission can be either automatic or manual.
(3): The engine can be either electronic or gasoline, or both.
The above is the first level context-free grammar.
(4): The “Type” is not one of the nonterminals in the meta-level,
so it stands as the attribute for this root class, which is
“Automobile”. That “Type” derives “car” simply means “car” is
“Type” ’s value.
(5): “derive” , “if”, “=” and “#” are generic keywords. Generic
keywords are built in the TLG, and keywords for domain-specific
relationships, configurations, and constraints are defined and
derived automatically from the domain meta feature models. This
statement refers to the production where the “Automobile” can
derive the “Tires”, and it represents the cardinality of the
configuration between the automobile and the tires.
“Automobile.Type” has the object-orientation flavor.
(6): By the consistent substitution rule, the second transmission
needs to be substituted by the string generated from the
“Transmission” in the meta-level grammar. So, this says in the
statement (2), only if both the pre-condition with (2)’s right hand
side and the post-condition with (2)’s left hand side are satisfying,
then the final configuration process for (2) can be completed.
We can get the meta-level and part of the hyper-level grammar by
automatically transforming the feature models. The
transformation rules can be built into the GME tool. Part of the
hyper-level grammar that is beyond the feature model can be
obtained by GUI input. Just based on a TLG interpreter (a little
more than a simple parser), the product configuration and
validation can be highly automated. Also since both the meta and
hyper level grammar are context-free grammars, the construction
of this TLG interpreter can be facilitated by the existing parser
generators, such as CUP [CUP99].

4. ARCHITECTURE OVERVIEW OF
UNIFRAME
The UniFrame project [Raj01][UniFr] is a framework for
providing architecture for automated software product generation,
upon an order requirement, based on the assembly of a selection
from an ensemble of searched software components.

4.1 Fundamental Theses of this Framework
4.1.1 Component-based software engineering
The implementation of UniFrame is built upon the maturity of
component-based software engineering [Hei01] because the
application generators dynamically configure the application out
of a set of available components based on their configuration
rules and dependencies embedded in the GDM. In our framework,
features are components. The separation of reusable feature
(asset) development in the domain engineering and the product
configuration using those assets in application engineering reflect
the fundamental discipline of the separation of component
development and component composition, and hopefully
ultimately leads to a component market.

4.1.2 Software development paradigm shift: from
single application development to system family
development
System family engineering is also called Generative Programming
[Cza00] and Product-line Engineering [Wei99]. Domain
Engineering is the activity of collecting, organizing, and storing
past experience in building systems or parts of systems in a
particular domain in the form of reusable assets, and the
application engineering is the process of producing concrete
systems using the reusable assets developed during domain
engineering. In [Cza00], the authors offered a notion of
Generative Domain Model (GDM), which is the result of the
domain engineering consisting of the feature models, and the
notions that are beyond the feature models such as configuration
constraints, test plans, feature implementations, QoS calculations,
domain prototypes, etc. This concept of paradigm shift is the core
design of the UniFrame.

4.1.3 Capture, formalism, modeling and reuse of
engineering knowledge

Any software system has the domain-specific concepts and
logic, has its structure and its implementation in some concrete
technologies. Decisions made on how to produce the software
using those concepts comprise the engineering knowledge. In
current software engineering practice (single system
development), the engineering knowledge is scattered among the
policies from domain business executives, expertise from domain
experts, experiences from software managers and engineers, and
the techniques from software developers and programmers.
During the software production process, these decisions will
contribute respectively towards the goal of the system, detailed
business logic of the system, specifications of software
architecture and role assignments for developers, concrete
software development by applying different programming
languages and component-based technologies.

However, when we move the development paradigm to the

product-line, with the goal of manufacturing the concrete software
product from the GDM automatically, the engineering knowledge
specific to that end product must be formally defined to guide this
automation. Toward this end, we categorize the engineering
knowledge clearly and formally into three domains [Zha02b]:

1) Business domains are associated with the natural
categorization of business sectors and the natural hierarchical
structure of business organizations;

2) Architecture domains can be seen as a set of reference
architectures or software patterns, which identify the
functionality, the role and the collaboration means among
different parts of software; and

3) Technology domains address the issues related to software
implementation technologies such as component models,
programming languages, hardware platforms, and so on.

In order to automate the concrete software generation, we need to
perform the domain engineering on the three dimensions of
engineering knowledge. We refer to the GDM for each of the
dimensions as Business GDM, Architecture GDM, and
Technology GDM.

4.2 Framework structure
4.2.1 Domain Level Development
As can be seen in the Figure 1 (see end of paper), domain level
engineering consists of three pieces of independent domain
development: business domains, architecture domains and
technology domains. We use GME to construct feature models in
the business GDM and architecture GDM, and those models are
translated into TLG internally inside the future augmented GME.
The architecture GDM specifies the commonality, variability, and
configuration for software patterns. At our current research stage,
the technology GDM is only concerned about the technology
mapping for the interoperability among heterogeneous software
components. The translated TLG can provide a means for early
prototyping in the domain, and set the context for the application
development as well.
Features should be standardized in each domain and are
continually evolving as the domain requirements, which are
different from application requirements, evolve.
In each domain, domain asset developers are producing domain-
specific features and other artifacts such as test plans, manuals,
tutorials, maintenance, etc. These features are component-based
and are designed for reuse. Along with the implementation for the
features, the developer should provide a Unified Meta-Model for
this feature (UMM4) [Raj00] so that in the application engineering
phase, the generator can use the UMM to identify the feature in
the GDM and calculate QoS measurements of the system. If the
domain is large enough, a set of available features are not limited
to reside on one computer, one network or one organization, they
will be dispersed over the Internet and across the organization
structures. Features are registered to the UniFrame system for
later discovery by the UniFrame Resource Discovery System
(URDS) [Sir02].

4.2.2 Application Level Development
In the application engineering phase, we perform a series of
model transformations starting at the requirements model and
ending at the concrete product. Requirements analysts construct
the requirements model in the GME under the context of feature

4 Briefly, UMM is used to specify the reusable components by

providing the values for numerous parameters in the three
GDMs.

models of this domain. This requirements model needs to be
translated into the TLG model for a complete validation. The
mapping is two-way, the changed and corrected TLG model
should also be re-visualized in GME. The same process applies
for the architecture model.
The requirements model, an instance configuration of the business
GDM, gets transformed into an instance configuration of an
architecture, and any instrumentation code specific to this
architecture will be generated at this time.
With the knowledge of the product requirement, and the
individual parts in that architecture, the system goes out to the
Internet and looks for the necessary features implementation in
the business domain using the URDS discovery system. If there
are any inconsistencies in the technologies used in those features,
the system will generate glue/wrapper code based on the
knowledge from the technology GDM [Zha02a].
Then the system QoS validation [Sun02] and final assembly
process are carried out automatically by using the information in
the three GDMs and UMM associated with each feature
implementation.
The GDMs, the requirements models, the application architecture
models and UMMs are all internally represented in TLG which
acts as the transformation engine.

5. RELATED WORKS AND CONCLUSION
Recent research efforts such as MDA, Generative Programming
and Product line Architecture have the same characteristic that is
moving the development abstraction one level up. The framework
described in this paper bridges the gap between MDA and the
System Family Development Paradigm by providing detailed
steps of model transformations based on the result of system
family engineering.
This paper also serves as the research effort contribution for the
open source MDA project that we are affiliated with [MDA02]. In
MDA terminology [Fra03], automatic transformations are
processed from the Platform Independent Model to Platform
Specific Models. In this paper, we explicitly give three stages of
transformations, i.e. the variations of “platform”. The knowledge
in three GDMs provides the meta-information about the various
platforms and the rules for steps of refinement (the rules are still
being researched).

6. REFERENCES
[Bak70] J. L. Baker, Some Formal Properties of the Syntax of

ALGOL 68, Doctoral Dissertation, University of
Washington, 1970.

[Bro87] F. P. Brooks, “No Silver Bullet: Essence and Accidents
of Software Engineering.” Computer, Vol. 20, No. 4,
pp.10-19, 1987.

[Bry02a] B. R. Bryant, B.-S. Lee, “Two–Level Grammar as an
Object-Oriented Requirements Specification
Language,” Proc. 35th Hawaii Int. Conf. System
Sciences (HICSS), 2002.
http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/P
DFdocuments/STDSL01.pdf

[Bry02b] B. R. Bryant, M. Auguston, R. R. Raje, C. C. Burt, A.
M. Olson, "Formal Specification of Generative

http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf
http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf

Component Assembly Using Two-Level Grammar,"
Proc. SEKE 2002, 14th Int. Conf. Software Engineering
and Knowledge Engineering, pp. 209-212, 2002.

[CUP99] CUP Parser Generator for Java.
http://www.cs.princeton.edu/~appel/modern/java/CUP/

[Cza00] K. Czarnecki, U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Fra03] D. S. Frankel, Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley Publishing, Inc.,
2003.

[GME00] GME User’s Manual. The Institute for Software
Integrated Systems, Vanderbilt University.
http://www.isis.vanderbilt.edu/Projects/gme/Doc.html

[Hei01] G. T. Heineman, W. T. Councill, Component-Based
Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[Kan98] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh,
“FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures,” Annals of
Software Engineering 5, pp. 143-168, 1998.

[MDA02]An Open Source MDA project. OOPSLA 2002
Workshop on Generative Techniques in the Context of
Model Driven Architecture
http://www.softmetaware.com/oopsla2002/positionstate
ment.html#Proposal

[Pem] S. Pemberton, “Executable Semantic Definition of
Programming Languages Using Two-level Grammars
(Van Wijngaarden Grammars).”
http://www.cwi.nl/~steven/vw.html

[Raj00] R. R. Raje, “UMM: Unified Meta-object Model for
Open Distributed Systems,” Proc. ICA3PP 2000, 4th
IEEE Int. Conf. Algorithms and Architecture for
Parallel Processing, 2000, pp. 454-465.

[Raj01] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C.
C. Burt, "A Unified Approach for the Integration of
Distributed Heterogeneous Software Components,"
Proc. 2001 Monterey Workshop Engineering
Automation for Software Intensive System Integration,
pp. 109-119, 2001.

[Raj02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C.
C. Burt, “A Quality of Service-Based Framework for
Creating Distributed Heterogeneous Software
Components,” Concurrency and Computation: Practice
and Experience 14 pp. 1009-1034, 2002.

 [Sin67] M. Sintzoff, “Existence of van Wijingaarden’s Syntax
for Every Recursively Enumerable Set,” Ann. Soc. Sci.
Bruxelles 2, pp. 115-118, 1976.

[Sir02] N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson, M.
Auguston, C. C. Burt, “An Architecture for the
UniFrame Resource Discovery Service Proc. SEM
2002, 3rd Int. Workshop Software Engineering and
Middleware, Springer-Verlag Lecture Notes in
Computer Science, Vol. 2596, 2002.

[Sun02] C. Sun, R. R. Raje, A. M. Olson, B. R. Bryant, M.
Auguston, C. C. Burt, Z. Huang, “Composition and
Decomposition of Quality of Service Parameters in
Distributed Component-Based Systems,” Proc. of Fifth

IEEE Int. Conf. Algorithms and Architectures for
Parallel Processing, pp. 273-277, 2002.

[UniFr] UniFrame Project http://www.cs.iupui.edu/uniFrame/
[Wei99] D. M. Weiss and C. T. R. Lei, Software Product-line

Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[Wij74] A. van Wijngaarden, “Revised Report on the
Algorithmic Language ALGOL 68.” Acta Informatica,
5, pp. 1-236, 1974.

[Zha02a] W. Zhao, “Two-Level Grammar as the Formalism for
Middleware Generation in Internet Component Broker
Organizations,” Proceedings of GCSE/SAIG Young
Researchers Workshop, held in conjunction with the
First ACM SIGPLAN Conference on Generative
Programming and Component Engineering, 2002.
http://www.cs.uni-
essen.de/dawis/conferences/GCSE_SAIG_YRW2002/s
ubmissions/final/Zhao.pdf

[Zha02b] W. Zhao, B. R. Bryant, F. Cao, R. R. Raje, M.
Auguston, A. M. Olson, C. C. Burt. “A Component
Assembly Architecture with Two-Level Grammar
Infrastructure”. Proc. of OOPSLA’2002 Workshop
Generative Techniques in the Context of Model Driven
Architecture, 2002.
http://www.softmetaware.com/oopsla2002/zhaow.pdf

http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.isis.vanderbilt.edu/Projects/gme/Doc.html
http://www.softmetaware.com/oopsla2002/positionstatement.html
http://www.softmetaware.com/oopsla2002/positionstatement.html
http://www.cwi.nl/~steven/vw.html
http://www.cs.iupui.edu/uniFrame/
http://www.cs.uni-essen.de/dawis/conferences/GCSE_SAIG_YRW2002/submissions/final/Zhao.pdf
http://www.cs.uni-essen.de/dawis/conferences/GCSE_SAIG_YRW2002/submissions/final/Zhao.pdf
http://www.cs.uni-essen.de/dawis/conferences/GCSE_SAIG_YRW2002/submissions/final/Zhao.pdf
http://www.softmetaware.com/oopsla2002/zhaow.pdf

Requirements

Requirement
Model in GME

Model in
TLG

Meta-data

Individual
feature
development

Business GDM
in GME
(include
Feature models
for business
domains)

Model in
TLG

Searching in the business
domain space for individual
features

Feature Feature

UMM UMM …

 Glues generation

 QoS validation

Architecture
GDM in GME
(include
Feature models
for architecture
domains)

Technology
GDM (include
Glue code

neration rules
 technology

domains)

ge
in

Rules in
TLG

Model in
TLG

Meta-data

Meta-data

Individual
feature
development

Model in
TLG

Domain engineering:
Meta-data for transformations

Application engineering:
Model Transformations

Product

Figure 1. The UniFrame System Structure

Architecture
Model in GME
…

	INTRODUCTION
	GENERIC MODELING ENVIRONMENT
	TWO-LEVEL GRAMMAR
	ARCHITECTURE OVERVIEW OF UNIFRAME
	Fundamental Theses of this Framework
	Component-based software engineering
	4.1.2Software development paradigm shift: from single application development to system family development

	Capture, formalism, modeling and reuse of engineering knowledge

	Framework structure
	Domain Level Development
	Application Level Development

	RELATED WORKS AND CONCLUSION
	REFERENCES

